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Abstract 

The Hybrid Optoelectronic  Neural  Object  Recognition System (HONORS) 
development  at the Jet Propulsion  Laboratory (JPL)  promises high speed (>IO00 
frame&)  processing of information  obtained with large  frame size (1 000x1 000-pixel) 
images. It consists of  two major building blocks: (1) an  advanced  grayscale  optical 
correlator  (OC);  and (2) a massively parallel,  VLSI-based  neural 3-D processor 
(N3DP). The OC, with its inherent parallel  processing  and shift invariance, is used for 
target of interest detection  and  segmentation. The N3DP, with its high speed 
convolution operations (IOi2 operationds) and neural learning capability, is used for 
target  classification and identification. This paper presents the  system architecture 
and  processing  algorithms. In addition, the results from simulations  and experiments, 
including the  detection,  classification,  and  tracking of tanks  and aircraft are 
summarized. 

Introduction 
Automatic  target  recognition (ATR) applications require high speed processing, 

recognition of objects from  cluttered  background,  and intelligent decision  making. A 

compact, high speed ATR system has always been an illusive, moving target. 
Enhancement in processor speeds have  gone  hand in hand with better and  larger 
sensors and  imagers requiring even higher data processing rates and  autonomy in 
processing  and  decision  making.  Various  civil,  military,  and space applications  would 
see orders of magnitude  advancement in their capabilities with a system performing 
ATR at  1000  frames per second especially with large format (1 000x1  000-pixel) 
imagers. 
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JPL is developing  a hybrid optoelectronic  neural  object  recognition system 
(HONORS), for high-speed  detection, segmentation, classification  and  identification  of 
objects from  noisy/cluttered backgrounds. Unique advantages of HONORS include 
high-speed ( 4  ms per frame), large  input frame (1000 x 1 000-pixel), high 
discrimination accuracy (> go%), and ease of training. HONORS consists of an 
optical  correlator (OC) and a  neural  3-dimensional  processor  (N3DP). The OC 

consists mainly of a unique gray-scale spatial light  modulator (SLM) as the high 
resolution  correlation filter and is used for  object  detection  and segmentation. Due  to 
the  inherent parallel processing  capability of OC, it would  perform wide area 
surveillance  for  target of interest (TOl) in less than 1 m s  per frame.  The detected and 
segmented TO1  would be handed over  to the  N3DP. 

The N3DP consists of a 64-channel high-speed  electronic  convolver coupled 
to a multilayer electronic  neural  network.  Each input (64x64-pixel) would be  

simultaneously  mapped  to 64 eigenvector-based object  data  bank images. The output 
from each input image would be a 64-element feature vector.  The  electronic neural 
network  would subsequently classify the  input feature vector  amongst multiple classes 
of objects. 

Both the correlation filter and the  eigenimage data bank rely on training from 
example images of  known classes. Training relies on rules developed using optimization 
process. More  specifically, a Maximum Average  Correlation Height (MACH)  algorithm is 
used for  correlation filter training.  Eigerlimage  computation is used to establish object 
data bank. 

System  Architecture 
The system block  diagram of HONORS is shown in Figure 1. The entire ATR function 
is implemented in 5 consecutive steps [l]: 
(1) Sensor datdimages, acquired by a multisensor  platform in both 1 -D 

(hyperspectral,  acoustic) and 2-0 (focal plane arrays, synthetic aperture radar, etc.) 
formats are fed into  HONORS  through a frame buffer (FB) device. 
(2) After format conversion, FB will feed the  full frame input into the  succeeding OC 
for preprocessing for target of interest (TOI) detection  and  segmentation based on 
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target shape, size, texture, and gray-scale distribution.  Training target images are 
computed with a distortion  invariant  correlation filter algorithm and  downloaded  into 
the  optical  correlator. It is also highly resistant to  background noise  and  clutter. Due  to 
its inherent parallel processing and shift invariance  capabilities, the  OC would be used 

for wide-area survey. The output of the  OC preprocessor will be a list of targets 
(including  both true and false targets) marked with their locations  and types (e.g. tank, 
truck, missile, etc.). 
(3) Based on the TO1 data output  from the OC, a column  loading input chip (CLIC) 
will acquire the  segmented TO1 images saved in FB. 
(4) In addition  to CLIC, N3DP has two  more building blocks: an eigen-vector- 
based feature extraction 3-D stacked electronic  processor  and  an analog neural 
network classification chip. The N3DP,  properly trained with a target database, will 
perform final target classification and identification. 
(5)  The  output of  N3DP will be a viable input for target  tracking,  navigation & 

guidance, sensor retasking, and mission replanning. Details of the two building 

blocks of HONORS: OC and N3DP are described in the  following sections. 

I Windows 1 
I Column  Loading Neural 3-Dimensional 

Processor  (N3DP) 
Target  Recognition  and  Classification  over  regions 
containing TOls 
Robust  Object  Recognition  with  Training  Capability 
and  Fault  Tolerance 

Discriminntion, 
and Tracking 

Optical  Correlator 

Wide  Area  Search 
Target of interest (TOI) Detection 
NoidClutter Preprocessing 
Parallel  Processing  with Shift Invariance 

* Spacecraft  Data  Mining  and  Processing 
Mission  Replanning 
Sensor  Re-tasking 
Spacecraft  Resource  Management 
Navigation and Guidance 

Figure 1 .  System Block  Diagram of  HONORS  for ATR 

JPL has recently  developed  a high-speed camcorder-sized grayscale optical 
correlator [2-41 consisting of a  grayscale input S L M  to  replace the  binary S L M  used in 
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previous  state-of-the-art  optical  correlator  systems. A ferroelectric liquid crystal (FLC) 

SLM capable of encoding  real-valued  data is also  used for the  correlation filter 
implementation. 

A system  architecture for this innovative  optical  processor is shown in Figure 
2(a). A 25 mw diode laser, emitting at 690 nm, is collimated  and  used as the light 

source. A 640 x 480-pixel liquid crystal  display (LCD) is used as the input S L M .  A 

128x128-pixel FLC SLM is used as the  filter SLM. The LCD SLM operates in a 
transmission  mode  while  the FLC S L M  operates in a reflection  mode.  The input image 
is Fourier-transformed  and  directed to address  the  filter SLM  via a polarizing  cubic 
beam splitter. A half-wave  plate is insetted  between  the  beam  splitter  and  the  filter 
SLM to steer the polarization orientation of the throughput light beam to ensure 
bipolar-amplitude output from the FLC SLM. The readout  beam,  reflected back from 
the filter  SLM is inverse  Fourier-transformed  at  the output correlation  plane. A high- 

speed CCD is used to grab  the output for  peak-detection. A photograph of this 

grayscale  optical  correlator is shown in Figure 2b. 
Input 

Collimator  Spatial  Light 

Reflection 
Filter SLM 

7 
4 

Photodetector Transform Cubic 
Array Lens  Beam  Splitter 

Figure 2a  Figure 2b 

Figure 2. Compact  grayscale  optical  correlator: (a) Schematic  diagram;  and 
(b) Photograph of the  palmcorder-size  correlator  system. 

The input LCD SLM possesses 640x480 pixels with a 24 mm pitch. This results 
in a 15.4 mm x 11.2 mm aperture, very  suitable for compact packaging.  The  contrast 
ratio is about 10O:l with an 8-bit grayscale  resolution  when  used for imaging  display. 
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The  SLM is addressed in a VGA graphic  mode.  The  key  device  leading to the  real- 
valued  filter  modulation is the  128x128  analog FLC SLM built using liquid crystal  on 
silicon  technology [I]. It utilizes high-tilt FLC material  resulting in the use of all  positive 
real  amplitudes,  binary  phase-only,  and  bipolar-amplitude  modulations  easily 
obtained by varying  the  orientation of the  halfwave  plate  placed in front of the  SLM. 
The FLC S L M  has a switching  time of 50 to 100 m s  that  provides a fram'e  rate up to 10 

kHz. The  contrast  ratio is 76:l. An estimated 4-6 bit output resolution  can  be  achieved 
by using an 8-bit gray-scale OC resoJution. 

Optical Correlator Filter Algorithm 
The  unique  real-valued  filter  modulation  capability of the grayscale OC has 

enabled us to select a more robust correlator filter algorithm for optical  implementation. 
A distortion  invariant  correlator filter algorithm, MACH (maximum average correlation 
height) [I ,571, has  been  selected  and  implemented. An overview of the MACH filter 
algorithm  has  been  given  elsewhere [1,7]. 

, 

Basically,  the  filter is synthesized as a composite of several  training  images 
(samples  picked from the  target database). A MACH filter is desirred to  generate  an 
output correlation  plan  that  has a high-peak  response with respect to all input images 
from the same  class. To compute  the MACH filter  transfer  function, h , a mean square 
error criterion referred to as the average  similarity measure (ASM) is used as a metric 
for distortion. The  filter  response is more  invariant with respect to a smaller  ASM. 
Therefore, in filter design, it is required  that h have a high correlation  peak with the 
mean  image  while  making the  ASM small. It is also  required to possess noise 
tolerance  to  reduce  the  output  noise  variance (ONV). 

l 

The  filter h maximizes  the  height of the  mean  correlation  peak  relative to the 
expected  distortion.  The  superior  performance of MACH filter is attributed to the 
inclusion of the ASM criterion which reduces  the  filters'  sensit(vity to distortions  and to 
the  removal of hard  constraints on the  peak. This permits  the  correlation  planes to 
adjust to whatever  value  best  permits  the  optimization of performance  criterion. 

Optical Mach Filter Demonstration Of Distortion-Invariant Target  Detection 

In a laboratoh experiment for distortion invariantJarget  detection using optically 
implemented MACH filter, a sequence of 15 IR images of a tank moving downward a 
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desert  terrain is used as the input. In preparing  the M A C H  filter, 5 of the inputs were 
selected for training  and  the  rest  used for testing. A M A C H  filter is computed  and  then 
downloaded into the  filter S L M .  In Figure 3, results of the  optical  correlator output are 
provided. All 15 inputs were  successfully  detected with one  single M A C H  filter  trained 
for recognizing  the  tank  images. Four out of the 15 total input images  used  are shown 
in Fig. 3 (a), and  their  corresponding  correlation  peaks  and 3-D plots are shown in (b) 

and (c) respectively.  Notice  that  the  correlation  peaks  remain sharp and uniform 
across all  the input images including those with scale  and'  perspective  variations.  The 
scale ratio  between  the top and bottom images is about 2:l. 

(a) (b) (c) 
Figure 3. Target  detection  results using an  optical M A C H  correlator  filter. 

This experiment  validates  that  an  optical  correlator is an effective  target 
detection  preprocessor  capable of accomplishing  target  detection  and  segmentation. 
Using a robust M A C H  filter will enable distortion invariant,  noise  resistant  filter  training 
to drastically  reduce  the  number of false  alarms  sent into the subsequent 
classification/identification stage. 
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Neural  3-Dimensional  Processor (N3DP) 

N3DP is a ground  and  airborne image-ProcessingAarget-recognition processor being' 
developed as an enhanced version of a 3-dimensional  artificial  neural  network 
(3DANN) processor  architecture. 
ARCHITECTURE: A block  diagram of the  front  part of the  N3DP consisting of a CLlC 
and  an NPM cube (without the subsequent multilayer  neural  network) is shown in 
Figure 4. It also shows a photograph of the hardware. The function of N3DP is to  have 
a 64x64-pixel image  window as an  electronic input to be 

- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 

Figure 4. The 3 D  convolver  network consists of a neural processing  module  (NPM 
cube) with 3-D stacked 64 chips, each with a 64x64 synapse array based on  8-bit 
multiplying digital  to  analog  technology  and  incorporating a special-purpose image- 
write device  called  CLlC  that is bump-bonded to the NPM cube. It has been realized 
(photograph) as  a 10-gm, 3-cm3 package, with power  consumption of 2.5 W. 

convolved  simultaneously with 64 selected and  stored  templates (each of 64x64-pixel 
size) and  provide the 64  electronic  outputs (one innerproduct per template)  at a speed 
of about 4 MHz, reducing the input bandwidth of 4096 to just 64  outputs. N3DP 

consists of three components: ( I )  a CLIC; (i i )  a set of 64  neural  processing (with an 
architecture of a 64x64  array of multiply-accumulate  circuits) chips  stacked as 3 D  cube 
(with edge-inputs) termed as neural processing  module  (NPM)  mounted  on a mother 
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board; and ( i i i )  a multilayer neural  network. A 64x64-pixel  image  window as digital 
input can  be fed to  the  CLIC, one column  at a time. 

CLlC consists of a set of 8-bit shift registers and a 64x64  array of 8-bit static 
random access memory (SRAM) cells  attached to respective multiplying digital  to 
analog  converters (MDAC). Further details of the  CLlC  and the  chip test  results are 
provided elsewhere [8]. The inputs are t h u s  converted by MDACs to 4096 analog 
voltage signals, and  fed in parallel into the NPM cube every 250 nanoseconds. 

Within each of the 3 D  stacked NPM chip  circuits,  the  chief  component of each 
cell of the 64x64  array is a high-speed multiply-accumulate (synapse) circuit  [9]. The 

circuitry is designed to operate at a low power consumption of only 3 to 5 pwatts,  or < I  

watt  per cube. The templates are provided by the digitally stored 8-bit weights in t h e  

synapse SRAM circuit.  Each  template is stored  column-wise on all 64  chips, first 
column of the  64  chips  providing the first stored  template, etc. The 64 sets of neural 
computations with 4096 (i.e,, 64x64)  analog inputs can be accomplished in 250 
nanoseconds [IO] (i.e., IO’* multiply and  add operations in one second). 
NEURAL ALGORITHMS,  SIMULATION, AND ANALYSIS:  Work  on neural algorithm 
development,  simulation,  and  analysis has been  done using this architecture.  The 
NPM network produces  64  inner-products (one 4096-element input with 64, 4096- 
element template vectors). Originally with the  concept of rastering the  large  image, it is 
to  be  fed by inputting a new column or row  of a 64x64  subwindow to CLlC  every 250 
n s  (at start, 63 column-input  operations would f i l l  t he  CLlC register array) 
accomplishing  64  convolutions of a 256x256  image with 64x64  masks in just 16 ms. 

The  64  analog  values generated by NPM every  250 n s  are converted to  8-bit 
digital values  and passed along  to  the associated memory and the point operation 
processor (POP) programmed as a neural  network. A custom VLSl implementation of 
POP  could be designed and fabricated;  however,  presently’ a commercial  parallel 
processing  board is being used. POP performs the  desired target recognitionAracking 
functions on the NPM output. Command  and  control of various  operations (e.g.) 
detection/  classification/tracking mode command,  loading of templates, point operation 
functions, data recording, etc.) are done  through a host machine. 
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To achieve  target  recognition of objects of arbitrary  size  and  orientation 
efficiently, a hierarchical  neural  network  approach  based on eigenvectors is 
employed, as shown in Figure 5. Using NPM as the  dedicated  synapse  weight 
multiplier  'hardware,  64  eigenvector  templates  iepresenting  the  principle  axes of a 
collection of multidimensional  data points (i.e., object  images of various 
configurations)  have  been  employed [I 1-13]. Since  each  data point (image) is a 
4096-element  vector, finding a  set of 4096 orthonormal  eigenvectors is possible (64 of 
which  can  reside on NPM cube- at one time). Selecting the top 64  eigenvectors 
derived from principal  component  analysis of target  imagery  reduces  the  image 
dimensionality'while  retaining  much - of the  relevant  classification  information. 

Neural Network Clas sifi er 

Helicopter Plane 

Proiection of CLIC and 
3DANN-M templates 

Figure 5. General  target  recognition is achieved using eigenvector  projections in 
conjunction with a neural  network  classifier  trained on selected  data sets. 

The  problem  that  has  plagued  pattern  recognition  systems is that,  unless  some 
restrictions are placed on variations in the  target  imagery,  the top components  become 
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quite  general  and  perhaps  unsuitable for fine distinction of a target with all possible 
scale,. rotation,  and  perspective  variations. Our strategy is to  parameterize (e.g., 
lighting, pose,  class, identity,  and scale) and  partition  the  object space in a hierarchical 
fashion.  The  top  layer is the  detection  layer,  trained to represent  the  presence or the  

absence of a target.  Then,  each  partition is first used to detect  and segment all 
possible targets (with some false  alarms). To classify  each  partition, a neural  network 
is trained  on  data  imagery  drawn  from  the set of variables  that  define  the  padition  and 
projected  onto  eigenvectors  suitable forthat particular distribution of data. 

Information about the  object (its class, identity, or orientation,  etc.) is processed in 
a  coalse-to-fine  manner. Fbr instance,  after  detecting  an  -bbject in a frame, a rough 
estimate of image  orientationkcale is made, a result that  can  then  be  used to limit the 
variation  that needs to be considered during subsequent object  classification  step. In 
simulation,  object  recognition  rates in cluttered  background of 96% have  been 
obtained [ 131. 

Conclusions 
HONORS, a powerful ATR system  described  herein  combines  an  advanced 

optical  correlator  and a 3-D integrated  neural  network  based  processor in a compact 
package  to perform object  recognition with unprecedented speed. Algorithms  have 
been  identified  and  simulated  for  the optimum operation of both the  optical  correlator 
and N3DP. Demonstrations for real-time  detection,  classification,  and  precision- 
tracking, with ground-based  and  airborne  experimeRts on live targets  are  planned. It 
can  be  projected  that  such a high performance  system will find varied uses both in t he  
NASA arena and for commercial  and  military  applications. 
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